⚫Integrating External Agents from Griptape, Langchain, etc
Integrating external agents from other frameworks like Langchain, Griptape, and more is straightforward using Zytron. Below are step-by-step guides on how to bring these agents into Zytron by creating a new class, implementing the required methods, and ensuring compatibility.
Quick Overview
Step 1: Create a new class that inherits the Agent class from Zytron.
Step 2: Override the .run(task: str) -> str method that will execute the agent and return a string response.
Step 3: Optionally, add methods to save outputs to other formats like JSON, logs, or databases.
Agent Class
The primary structure you'll need to integrate any external agent is the Agent class from Zytron. Here’s a template for how your new agent class should be structured:
from zytron import Agent
class ExternalAgent(Agent):
def run(self, task: str) -> str:
# Implement logic to run external agent
pass
def save_to_json(self, output: str, filepath: str):
# Optionally save the result to a JSON file
with open(filepath, "w") as file:
json.dump({"response": output}, file)
Griptape Agent Integration Example
In this example, we will create a Griptape agent by inheriting from the Zytron Agent class and implementing the run method.
Griptape Integration Steps:
Inherit from Zytron Agent: Inherit from the ZytronAgent class.
Create Griptape Agent: Initialize the Griptape agent inside your class and provide it with the necessary tools.
Override the run() method: Implement logic to process a task string and execute the Griptape agent.
Griptape Example Code:
from zytron import (
Agent as ZytronAgent,
) # Import the base Agent class from Zytron
from griptape.structures import Agent as GriptapeAgent
from griptape.tools import (
WebScraperTool,
FileManagerTool,
PromptSummaryTool,
)
# Create a custom agent class that inherits from ZytronAgent
class GriptapeZytronAgent(ZytronAgent):
def __init__(self, *args, **kwargs):
# Initialize the Griptape agent with its tools
self.agent = GriptapeAgent(
input="Load {{ args[0] }}, summarize it, and store it in a file called {{ args[1] }}.",
tools=[
WebScraperTool(off_prompt=True),
PromptSummaryTool(off_prompt=True),
FileManagerTool(),
],
*args,
**kwargs,
)
# Override the run method to take a task and execute it using the Griptape agent
def run(self, task: str) -> str:
# Extract URL and filename from task
url, filename = task.split(",") # Example task string: "https://example.com, output.txt"
# Execute the Griptape agent
result = self.agent.run(url.strip(), filename.strip())
# Return the final result as a string
return str(result)
# Example usage:
griptape_zytron_agent = GriptapeZytronAgent()
output = griptape_zytron_agent.run("https://griptape.ai, griptape.txt")
print(output)
Explanation:
GriptapeZytronAgent: The custom class that integrates Griptape into Zytron.
run(task: str): This method extracts inputs from the task string and runs the agent using Griptape tools.
Tools: The Griptape agent is equipped with web scraping, summarization, and file management tools.
Additional Features:
You can enhance your external agents with additional features such as:
Saving outputs to JSON, databases, or logs.
Handling errors and retry mechanisms for robustness.
Custom logging with tools like Loguru for extensive debugging.
Langchain Agent Integration Example
Next, we demonstrate how to integrate a Langchain agent with Zytron by following similar steps.
Langchain Integration Steps:
Inherit from Zytron Agent: Inherit from the ZytronAgent class.
Create Langchain Agent: Initialize a Langchain agent with the necessary components (like language models or memory modules).
Override the run() method: Pass tasks to the Langchain agent and return the response.
Langchain Example Code:
from zytron import Agent as ZytronAgent
from langchain import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
# Create a custom agent class that inherits from ZytronAgent
class LangchainZytronAgent(ZytronAgent):
def __init__(self, *args, **kwargs):
# Initialize the Langchain agent with LLM and prompt
prompt_template = PromptTemplate(template="Answer the question: {question}")
llm = OpenAI(model="gpt-3.5-turbo")
self.chain = LLMChain(llm=llm, prompt=prompt_template)
super().__init__(*args, **kwargs)
# Override the run method to take a task and execute it using the Langchain agent
def run(self, task: str) -> str:
# Pass the task to the Langchain agent
result = self.chain.run({"question": task})
# Return the final result as a string
return result
# Example usage:
langchain_zytron_agent = LangchainZytronAgent()
output = langchain_zytron_agent.run("What is the capital of France?")
print(output)
Explanation:
LangchainZytronAgent: The custom class integrates Langchain into Zytron.
run(task: str): The task is passed to a language model via Langchain and returns a result.
Additional Examples from other providers
1. OpenAI Function Calling Agents
Description: OpenAI models like GPT-4 can now call functions programmatically. This makes it possible to create agents that execute external functions, APIs, or code snippets.
## Example Integration:
from zytron import Agent as ZytronAgent
import openai
# Custom OpenAI Function Calling Agent
class OpenAIFunctionAgent(ZytronAgent):
def __init__(self, *args, **kwargs):
# Initialize OpenAI API credentials and settings
self.api_key = "your_openai_api_key"
super().__init__(*args, **kwargs)
def run(self, task: str) -> str:
# Example task: "summarize, 'Provide a short summary of this text...'"
command, input_text = task.split(", ")
response = openai.Completion.create(
model="gpt-4",
prompt=f"{command}: {input_text}",
temperature=0.5,
max_tokens=100,
)
return response.choices[0].text.strip()
# Example usage:
openai_agent = OpenAIFunctionAgent()
output = openai_agent.run("summarize, Provide a short summary of this text...")
print(output)
2. Rasa Agents
Description: Rasa is a popular open-source framework for building conversational AI agents. You can integrate Rasa to build dialogue-based agents with Zytron.
## Example Integration:
from zytron import Agent as ZytronAgent
from rasa.core.agent import Agent as RasaAgent
from rasa.core.interpreter import RasaNLUInterpreter
# Custom Rasa Zytron Agent
class RasaZytronAgent(ZytronAgent):
def __init__(self, model_path: str, *args, **kwargs):
# Initialize the Rasa agent with a pre-trained model
self.agent = RasaAgent.load(model_path)
super().__init__(*args, **kwargs)
def run(self, task: str) -> str:
# Pass user input to the Rasa agent
result = self.agent.handle_text(task)
# Return the final response from the agent
return result[0]["text"] if result else "No response."
# Example usage:
rasa_zytron_agent = RasaZytronAgent("path/to/rasa_model")
output = rasa_zytron_agent.run("Hello, how can I get a refund?")
print(output)
3. Hugging Face Transformers
Description: Hugging Face offers a variety of pre-trained models, including transformers for NLP tasks. These can be easily integrated into Zytron for various tasks like text generation, question answering, and more.
## Example Integration:
from zytron import Agent as ZytronAgent
from transformers import pipeline
# Custom Hugging Face Agent
class HuggingFaceZytronAgent(ZytronAgent):
def __init__(self, model_name: str, *args, **kwargs):
# Initialize a pre-trained pipeline from Hugging Face
self.pipeline = pipeline("text-generation", model=model_name)
super().__init__(*args, **kwargs)
def run(self, task: str) -> str:
# Generate text based on the task input
result = self.pipeline(task, max_length=50)
return result[0]["generated_text"]
# Example usage:
hf_zytron_agent = HuggingFaceZytronAgent("gpt2")
output = hf_zytron_agent.run("Once upon a time in a land far, far away...")
print(output)
4. AutoGPT or BabyAGI
Description: AutoGPT and BabyAGI are agent frameworks designed to be autonomous, where agents can recursively execute tasks and create new tasks based on previous outputs.
## Example Integration:
from zytron import Agent as ZytronAgent
from autogpt import AutoGPT
# Custom AutoGPT Agent
class AutoGPTZytronAgent(ZytronAgent):
def __init__(self, config, *args, **kwargs):
# Initialize AutoGPT with configuration
self.agent = AutoGPT(config)
super().__init__(*args, **kwargs)
def run(self, task: str) -> str:
# Execute task recursively using AutoGPT
result = self.agent.run(task)
return result
# Example usage:
autogpt_zytron_agent = AutoGPTZytronAgent({"goal": "Solve world hunger"})
output = autogpt_zytron_agent.run("Develop a plan to solve world hunger.")
print(output)
5. DialogFlow Agents
Description: DialogFlow by Google is used to build conversational agents. These agents can process user intents and deliver responses based on predefined conversation flows.
Description: ChatterBot is a Python-based machine-learning conversational agent. It learns from previous conversations to generate intelligent responses.
## Example Integration:
from zytron import Agent as ZytronAgent
from chatterbot import ChatBot
# Custom ChatterBot Agent
class ChatterBotZytronAgent(ZytronAgent):
def __init__(self, name: str, *args, **kwargs):
# Initialize ChatterBot
self.agent = ChatBot(name)
super().__init__(*args, **kwargs)
def run(self, task: str) -> str:
# Get a response from ChatterBot based on user input
response = self.agent.get_response(task)
return str(response)
# Example usage:
chatterbot_zytron_agent = ChatterBotZytronAgent("Assistant")
output = chatterbot_zytron_agent.run("What is the capital of Italy?")
print(output)
7. Custom APIs as Agents
Description: You can create agents that integrate with any REST or GraphQL API by defining them as a task runner within Zytron. This allows for interaction with third-party services.
## Example Integration:
from zytron import Agent as ZytronAgent
import requests
# Custom API Agent
class APIAgent(ZytronAgent):
def run(self, task: str) -> str:
# Parse task for API endpoint and parameters
endpoint, params = task.split(", ")
response = requests.get(endpoint, params={"q": params})
return response.text
# Example usage:
api_zytron_agent = APIAgent()
output = api_zytron_agent.run("https://api.example.com/search, python")
print(output)
Summary of Integrations:
Griptape: Integrate with tools for web scraping, summarization, etc.
Langchain: Use powerful language model orchestration.
OpenAI Function Calling: Directly run OpenAI API-based agents.